ELSEVIER

Contents lists available at ScienceDirect

Talanta

journal homepage: www.elsevier.com/locate/talanta

Visible-light-driven photocatalytic and chemical sensing properties of SnS₂ nanoflakes

Ahmad Umar a,b,*, M.S. Akhtar C, G.N. Dar b,e, M. Abaker b,e, A. Al-Hajry b,d, S. Baskoutas e

- ^a Department of Chemistry, College of Science and Arts, Najran University, P.O. Box 1988, Najran 11001, Kingdom of Saudi Arabia
- b Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, P.O. Box 1988, Najran 11001, Kingdom of Saudi Arabia
- ^c New and Renewable Energy Materials Development Center (NewREC), Chonbuk National University, Jeonbuk, South Korea
- ^d Department of Physics, Faculty of Sciences and Arts, Najran University, P.O. Box 1988, Najran-11001, Kingdom of Saudi Arabia
- ^e Department of Materials Science, University of Patras, Patras, Greece

ARTICLE INFO

Article history:
Received 4 February 2013
Received in revised form
19 March 2013
Accepted 20 March 2013
Available online 28 March 2013

Keywords: SnS₂ Nanoflakes Photocatalytic degradation Rhodamine B Nitroaniline Chemical sensors

ABSTRACT

This work demonstrated the successful and facile large-scale synthesis and characterizations of SnS₂ nanoflakes. The detailed morphological studies revealed that the synthesized products were nanoflakes and were grown in large quantity. The XRD pattern and detailed compositional studies confirmed that the synthesized SnS₂ nanoflakes were well-crystalline and possessing hexagonal SnS₂ phase. The synthesized SnS₂ nanoflakes were used as efficient photocatalysts for photocatalytic degradation and effective electron mediators for the fabrication of chemical sensor. The photocatalytic properties of SnS₂ nanoflakes towards the photocatalytic degradation of Rhodamine B dye under visible light irradiation showed reasonably good degradation of ~61%. Moreover, the as-synthesized SnS₂ nanoflakes were used as efficient electron mediators for the fabrication of nitroaniline chemical sensor by simple *I-V* technique. Very high-sensitivity of ~ 505.82 \pm 0.02 mAcm⁻².(mole/L)⁻¹ and experimental detection limit of ~15 × 10⁻⁶ (mole/L) in a short response time of ~10.0 s with LDR in the range of 15.6 × 10⁻⁶ - 0.5 × 10⁻³ mole L⁻¹ were observed for the fabricated nitroaniline chemical sensor. The observed results indicated that the SnS₂ nanoflakes can efficiently be used as visible-light-driven photocatalysts and the fabrication of ultra-high sensitive chemical sensors.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The aquatic environmental imbalance mainly occurs by the contamination of water with the harmful non-biodegradable materials [1–3]. Various textile and chemical industries release many harmful organic macromolecules and dyes [4,5]. Particularly the disposable of colored organic waste water from the textile dyeing industries causes a serious problem to aquatic ecosystem and hence contaminate the environment which cause a serious threat to the living organisms [6]. Among various water soluble dyes, Rhodamine B (RhB) with non-volatile nature and bright reddish violet in color are extensively used in various prospect applications such as fluorescence microscopy, flow cytometry, fluorescence correlation spectroscopy and ELISA [7] and also applied for dying cottons, bamboo, weed, stamp pad inks etc.

E-mail address: ahmadumar786@gmail.com (A. Umar).

The waste of RhB dye hazardously affects natural environments especially aquatic life and lead the mutagenic effects to humans and other living organisms [8,9]. Conventionally, a biological treatment or degradation process utilizes to decolorize the dyes, but it is ineffective for the complete removal and degradation of dye. Last few years, the catalytic process derived by solar energy or other radiation energy has been studied for the successful degradation of harmful organic dyes into environmental friendly materials [10]. In this regard, because of the unique band gap and various other physical and chemical properties, the nanoscale inorganic semiconductors such as metal oxides, metal sulfides etc. were used as active catalysts for the degradation/oxidation of organic dyes and reported in the literature [11]. The photocatalytic degradation occurs due to the effective separation of excited electron in conduction band (CB) and hole in valance band (VB) under the light illumination, which could capture by some surface species in the surroundings such as hydroxyl or O_2 groups [12]. These catalysts are usually active under the UV-light. Among various semiconducting materials, the metal sulfides have received a great deal of interest as promising photocatalysts under

^{*} Corresponding author at: Najran University, Centre for Advanced Materials and Nanoengineering (CAMNE), Centre for Advanced Materials and Najran 11001, Saudi Arabia. Tel.: +966 534 574597.

the visible light illumination [13]. Domen et al. demonstrated a high photo-activity for hydrogen evolution over the surface of synthesized nanostructured CdS under visible light [14].

Recently, the IV-VI group semiconductors such as tin sulfides (SnS, SnS₂) have received much attention owing to their strong anisotropy of optical properties and potential applications in solar cells as well as electrical switchings [15–20]. Among large number of binary tin sulfides (SnS, SnS₂, Sn₂S₃, Sn₃S₄, Sn₄S SnS and SnS₂), the SnS₂ possesses special place due to its own properties and wide applications in solar cells, lithium-ion batteries, optoelectronics, photoluminescence and so on [21]. The SnS_2 is an n-type semiconductor and is receiving much attention owing to its layered hexagonal CdI₂-type crystal structure with two layers of close-packed sulfur anions and tin cations sandwiched between them in an octahedral coordination manner. Due to its absorption tunable band gap of 2.2 eV, the crystalline SnS2 could be a promising photocatalytic material for the photocatalytic degradation of organic dyes in the presence of visible-light [22]. Moreover, SnS₂ nanomaterials possess good oxidative and thermal stability in acid and neutral environment [23,24].

In this work, we demonstrate the facile and large-scale synthesis of well-crystalline SnS_2 nanoflakes by simple hydrothermal process. The synthesized nanoflakes were characterized in detail in terms of their morphological, structural and compositional properties. The as-synthesized nanoflakes were used as efficient photocatalysts for photocatalytic degradation of Rhodamine B dye under visible light. Moreover, the prepared nanoflakes were used as efficient electron mediators for the fabrication of nitroaniline chemical sensor by simple I-V technique.

2. Experimental details

2.1. Synthesis of SnS₂ nanoflakes

All the chemicals utilized for the synthesis of SnS₂ nanoflakes were purchased from Sigma-Aldrich and used without further purification. Distilled water (DW) was used for all the synthesis process. Well-crystalline SnS₂ nanoflakes were synthesized by facile low-temperature hydrothermal process. In a typical reaction process, aqueous solutions of 0.02 M SnCl₄ 5H₂O and 0.05 mol/L thiourea, both prepared in 50 mL DI water, were mixed well under constant stirring. After constant and vigerous stirring for 30 min, the resultant solution was transferred to teflon lined autoclave, sealed and heated upto 140 °C for 3 h. After desired reaction time, the autoclave was allowed to cool at room-temperature and finally vellowish precipitate was obtained which was extensively washed several times with DW, ethanol and acetone, sequentially and dried at 55 °C for 3 h. During the reaction, the thiourea reacts with water and produces H₂S which is further reacted with Sn⁴⁺ ions obtained from SnCl₄. The chemical reactions involved in the synthesis process can be written as:

$$NH_2CSNH_2+2H_2O \rightarrow 2NH_3+H_2S+CO_2$$

$$Sn^{4+}+H_2S \rightarrow SnS_2\downarrow +4H^+$$

The dried powder was then characterized in detail in terms of their morphological, structural and compositional properties and utilized as efficient photocatalyst for photocatalytic degradation of Rhodamine B and as an electron mediator for the fabrication of reproducible and highly sensitive nitro-aniline chemical sensor.

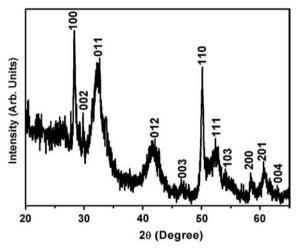
2.2. Characterizations of as-synthesized SnS₂ nanoflakes

The as-synthesized SnS₂ nanoflakes were characterized in detail by various analytical tools. The general and detailed

morphologies of as-synthesized nanoflakes were done by field emission scanning electron microscopy (FESEM; JEOL-JSM-7600 F) and transmission electron microscopy (TEM) equipped with highresolution TEM (HR-TEM). For HRTEM analysis, the synthesized products were ultrasonically dispersed in acetone and a drop of acetone solution, which contains the SnS₂ nanostructures, was placed on a copper grid and examined. The crystallinity and crystal phases were examined by the X-ray diffraction (XRD; PANanalytical Xpert Pro.) pattern measured with Cu-Kα radiation $(\lambda = 1.54178 \text{ Å})$ in the range of $10-65^{\circ}$. The chemical composition of the as-synthesized SnS₂ nanoflakes was examined by Fourier transform infrared (FT-IR) spectroscopy, measured at room-temperature, in the range of 400–4000 cm⁻¹. To prepare the sample for FTIR measurements, small amount of the as-synthesized SnS₂ nanoflakes was mixed well with the potassium bromide (KBr) and subsequently compressed under high-pressure (~4t) for pellet preparation. The obtained pellet, composed of SnS₂ nanoflakes and KBr, was used for the FTIR measurements.

2.3. Photocatalytic decomposition of rhodamine B dye using as-synthesized SnS₂ nanoflakes

The photocatalytic performance of the synthesized SnS₂ nanoflakes was examined by studying the photocatalytic decomposition of rhodamine B (RhB) dye. The photocatalytic degradation of RhB dye was performed under the illumination of Xenon arc lamp (300 W, Hamamatus: L 2479), attached with UV cut-off filter of wavelength 400 nm (FSQGG-400) which limited the illumination in a range of 400-800 nm, i.e. visible light. The degradation of RhB dye was calculated by measuring the UV-vis absorbance at 552 nm wavelength at certain time intervals. The photo-catalytic degradation was established in a 250 ml beaker using 150 ml of RhB dve solution (10 ppm). Prior to the light illumination, the prepared RhB dve solution was bubbled with oxygen for 30 min to allow the equilibrium of the system. For the photocatalytic experiments, 150 mg of the as-synthesized SnS2 nanoflakes as photocatalyst were added to the RhB dye solution and stirred for 10 min for the initial physical adsorption of dye over SnS2 nanoflakes surfaces. The decomposed dye solution was measured by using (UV-vis spectrophotometer Perkin Elmer-UV/VIS-Lambda 950) after regular time intervals.


2.4. Fabrication and characterization of nitro-aniline chemical sensor by I–V technique

To modify the electrode surface, firstly, the surface of glassy carbon electrode (GCE) was polished with commercially available alumina, followed by rinsing with DW thoroughly. For the GCE surface modification for nitro-aniline chemical sensor, slurry of SnS₂ nanoflakes were made by mixing an appropriate composition of SnS₂ nanoflakes and conducting agent (butyl carbital acetate). Finally, a small amount of the slurry was casted on GCE (surface area 0.0316 cm²) surface, and then the modified electrode was dried in electric oven at 60 + 5 °C for 4 h. The sensor analytical performance was investigated using I–V technique as discussed in our previous reports [25]. For I-V measurements, an electrometer (Keithley, 6517A, USA) was used as a voltage source and the SnS₂ nanoflakes/GCE was used as a working electrode while Pt wire was employed as a counter electrode. The current response was measured from 0.0 to 2.0 V while the time delaying and response time were 1.0 s and 10.0 s, respectively. The amount of 10.0 mL phosphate buffer solution was kept constant for all the measurements. For the concentration studies, a wide range of nitroaniline concentrations $(15.6 \times 10^{-6} \text{ mol/L} - 1 \times 10^{-3} \text{ mol/L})$ was used. The sensitivity of the fabricated nitro-aniline chemical sensor was estimated from the slope of the current versus concentration from the calibration plot divided by the value of active surface area of sensor/electrode. All the sensing experiments were carried out at room-temperature.

3. Results and discussion

3.1. Structural, morphological and compositional properties of SnS₂ nanoflakes

Prior to any applications, the as-synthesized SnS_2 nanoflakes were characterized in terms of their structural, morphological and compositional properties. To examine the crystallinity and crystal phase, the as-synthesized SnS_2 nanoflakes were examined by X-ray diffraction (XRD). Fig. 1 exhibits the typical XRD pattern for as-synthesized nanoflakes. All the reflections in the diffraction pattern are well

Fig. 1. XRD pattern of the as-synthesized SnS₂ nanoflakes prepared by facile hydrothermal process at low-temperature.

matched with the typical SnS_2 crystals and can be indexed to the hexagonal SnS_2 phase with a lattice constant a=3.649 Å and c=5.899 Å. The observed XRD results are well matched with already reported literature (JCPDPS card no. 22–0951). Moreover, no other reflection, except SnS_2 reflections are seen in the pattern which confirms the formation of pure SnS_2 nanomaterials.

The general morphologies of as-prepared SnS₂ nanomaterials were examined by FESEM and shown in Fig. 2(a) and (b). Fig. 2 (a) exhibits the typical low-magnification image and revealed that the prepared SnS₂ nanomaterials possess flake-shaped morphology and are synthesized in large quantity. It is clear from the highresolution images that the flakes are thin nanosheets which are curly in shape and randomly arranged (Fig. 2(b)). Moreover, due to larger size, the nanosheets are interconnected with each other in such a manner that they made some porous architecture structures and hence possess larger surface area. Therefore, these materials are promising candidates for photocatalysts and sensors applications. The typical thicknesses of the nanosheets are in the range of 60 + 20 nm with several micrometers in width. The detailed morphological investigations of as-synthesized SnS2 nanoflakes were examined by TEM equipped with high-resolution TEM (HRTEM). For the TEM analysis, the prepared SnS₂ nanoflakes were ultrasonically dispersed in acetone and a drop of acetone which contains the nanoflakes was placed on the TEM grid and examined.

Fig. 2(c) exhibits the typical low-resolution TEM image of the as-synthesized SnS_2 nanoflakes. It is clear from the TEM image that the nanoflakes were made by the thin SnS_2 nanosheets. Moreover, due to large size, the nanosheets are interconnected with each other which leads to the formation of some porous architecture. The typical thicknesses of the nanosheets are in the range of 60 ± 20 nm. It is also clear from the observed TEM image that the nanoflakes are synthesized in large quantity. All the TEM observations regarding shape, size and thickness are well matched with the obtained FESEM results. For further structural properties, the nanoflakes were investigated by HRTEM and results are shown in Fig. 2(d). The observed HRTEM exhibits a very clear and

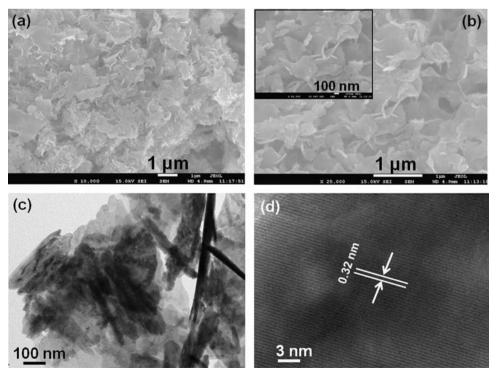


Fig. 2. (a) Low and (b) high-magnification FESEM, (c) low- and (d) high-resolution TEM images of the as-synthesized SnS₂ nanoflakes prepared by facile hydrothermal process at low-temperature.

well-defined lattice fringes with the lattice spacing of ~ 0.32 nm, which is fully consistent with the distance of (100) crystalline plane of the hexagonal SnS_2 . The obtained HRTEM results are well matched with the XRD observations.

The chemical composition of as-synthesized SnS₂ nanoflakes was examined by using FTIR spectroscopy, as shown in Fig. 3. Several well-defined absorption bands were observed in the spectrum at 631, 1411 and 1641 cm⁻¹. The peak appeared at 631 cm⁻¹ in the spectrum is due to the formation of Sn–S bond [26]. The origination of two very week peaks at 1411 and 1641 cm⁻¹ are due to the formation of C–H and C–O bands.

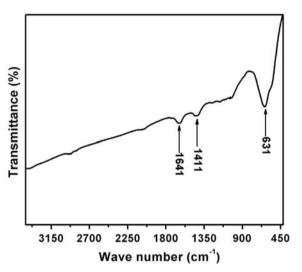
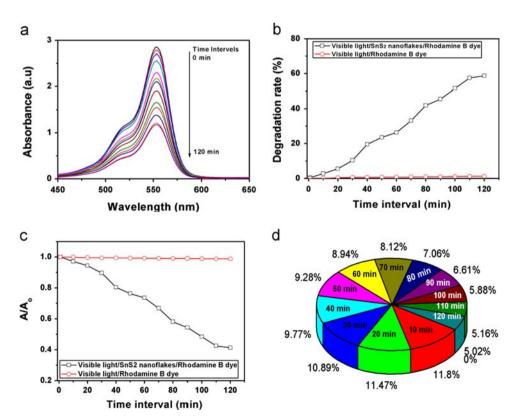


Fig. 3. FTIR spectrum of the as-synthesized SnS_2 nanoflakes prepared by facile hydrothermal process at low-temperature.


respectively [26]. Finally, due to the presence of Sn–S bond, it is confirmed that the synthesized nanomaterial is SnS₂.

3.2. Visible-light driven photocatalytic properties of SnS₂ nanoflakes

To define the photocatalytic activity of synthesized SnS_2 nanoflakes, the degradation of RhB dye was performed under the visible light irradiation. The degradation rate of RhB dye was estimated by the following relation [27(a)];

Degradation rate =
$$(A_0 - A/A_0) \times 100 = (C_0 - C/C_0)100$$

where, C₀ represents the initial concentration, C the variable concentration, A₀ the initial absorbance, and A the variable absorbance. Fig. 4 depicts the UV-vis absorption spectra (a), (b) % degradation rate versus time; (c) a plot for A_0/A versus time and (d) pie degradation chart of decomposed RhB dye solution by synthesized SnS₂ nanoflakes under the visible light irradiation. The photocatalytic degradation was monitored by measuring the maximum absorbance at the wavelength of 552 nm in regular time intervals (10 min) under visible light. Interestingly, it was observed that the relative absorption intensity continuously decreases as increasing the visible light exposure time which indicates that the RhB dye decomposes gradually over the surface of the photocatalyst, i.e. SnS₂ nanoflakes (Fig. 4(a)). Under visible light irradiation, the synthesized SnS2 nanoflakes significantly degraded the RhB dye by ~61% within 120 min as shown in Fig. 4(b). However, the degradation rate of RhB dye was almost negligible when photocatalytic reaction is performed under visible light irradiation without SnS₂ nanoflakes which clearly suggested that the degradation rate increases in presence of the photocatalyst, i.e. SnS₂ nanoflakes. Fig. 4(c) shows the plot of the variation in the relative concentration (A/A₀) versus time interval for the photo-degradation of RhB dye over the surface of SnS₂ nanoflakes under visible light irradiation. Interestingly, the obtained results

Fig. 4. (a) UV–Vis absorbance spectra of decomposed RhB dye solution over as-synthesized SnS₂ nanoflakes under visible light irradiation, (b) degradation rate (%) and (c) extent of decomposition (A/Ao) of RhB dye with respect to time intervals, (d) pie degradation chart of degraded RhB dye.

clearly display the gradual degradation of RhB dye over the surface of synthesized catalyst. The relative concentration of RhB dye decreases with increasing the visible light irradiation exposure time while in the absence of synthesized SnS₂ nanoflakes catalyst, negligible degradation is detected under visible light irradiation. The pie degradation chart of RhB dye (Fig. 4(d)) reveals that most of dye molecules are degraded in 80 min and afterward the degradation rate slows down. Conclusively, the synthesized SnS₂ nanoflakes as photocatalyst are able to degrade harmful RhB dye into the environment friendly residues under visible light irradiation. The mass spectroscopy of RhB dve before and after photocatalytic reaction has been examined to investigate the possible degradation products/intermediates of photocatalytic degradation of RhB dye, as shown in Fig. 5(a). At 0 min, RhB dye solution shows a strong mass signal at m/z=451.1, which is close to the mass of RhB dye. It is seen that a number of mass signals are detected in the RhB dye solution after 120 min, indicating the degradation of RhB dye over the surface of SnS₂ nanoflakes under visible light. The main mass signal at m/z=451.1 becomes weak after 120 min and splits into various mass signals. Fig. 5(b) depicts the possible degradation intermediates during the photocatalytic reactions which are illustrated on the observed mass signals. These possible reaction intermediates from fragmentations of the RhB dye contain the oxy groups in their rings. Thus, the formations of these intermediates might be helpful for the complete mineralization of organic dye [27(b)].

The schematic illustration to understand the degradation mechanism of RhB dye over the surface of SnS_2 nanoflakes was presented in Fig. 6. In general, the generation of oxyraicals such as hydroxyl (OH $^{\bullet}$) and superoxide (O_2^{\bullet} , HO_2^{\bullet}) are responsible for the degradation of organic dyes under light irradiation and these radicals are formed over the surface of semiconductors by the separation of electron–hole pairs [28]. Importantly, the presence of carbon species on surface of SnS_2 catalyst is responsible for creating active sites which is helpful for the degradation of dye under light illumination [29]. From the mechanism, upon light illumination SnS_2 nanoflakes absorbs the visible light and the electron (\bar{e}) from VB excites to CB which effectively causes a separation between \bar{e}

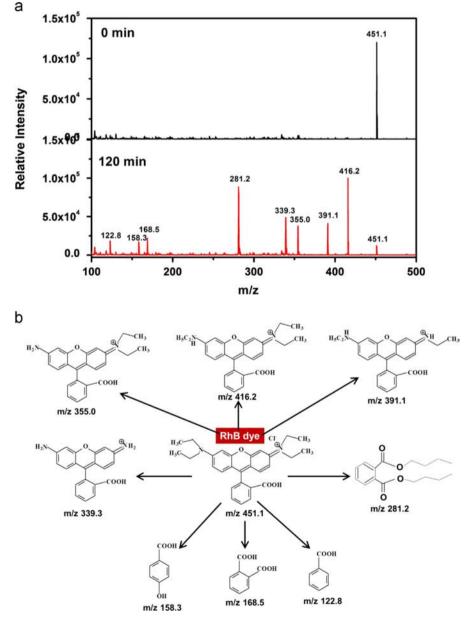


Fig. 5. (a) Mass spectra of RB dye solutions over as synthesized SnS_2 nanoflakes after 0 min and 120 min with the scan 100–500 m/z and (b) the possible reaction intermediates after the photocatalytic reaction.

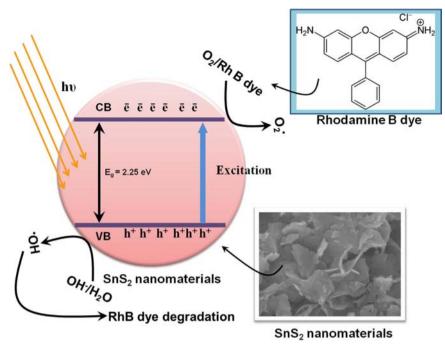


Fig. 6. A schematic illustration of photocatalytic activity of SnS₂ nanoflakes.

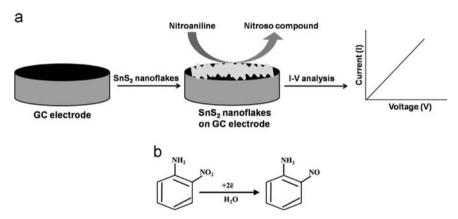


Fig. 7. (a) Schematic representation of nitroaniline chemical sensor fabricated based on *I–V* technique using SnS₂ nanoflakes modified GC electrode as working electrode; (b) chemical reaction describing the sensing mechanism.

and hole (h⁺) pairs [30]. The RhB dye molecules firstly adsorb on the surface of the SnS_2 nanoflakes photocatalyst which reacts with water on the surface of SnS_2 nanoflakes photocatalyst to generate RhB⁺⁺ and OH⁺ radicals. The flakes morphology of synthesized SnS_2 nanomaterial sufficiently produces the large number of RhB⁺⁺ under visible light irradiation and credit to the easy transformation or oxidation of harmful organic dye into less harmful chemicals. Moreover, the unique band gap and large surface area (34.6 m²/g) of synthesized SnS_2 nanoflakes photocatalyst could able to provide efficient \bar{e} and h⁺ separation, resulting in the formation of large number of RhB⁺⁺ and OH⁺ radicals [31]. In this work, the high degradation of RhB dye is due to morphologies of nanoflakes and generation of RhB⁺⁺ and OH⁺ radicals on the surface of SnS_2 nanoflakes.

3.3. Nitroaniline chemical sensor application of as-synthesized SnS_2 nanoflakes

The detailed methodology to modify the GC electrode with SnS_2 nanoflakes is described in experimental details section. Fig. 7 (a) exhibits the schematic representation of nitro-aniline chemical

sensor fabricated based on SnS₂ nanoflakes coated GCE electrode and its sensing mechanism by I-V technique. Briefly, slurry of SnS₂ nanoflakes was made by mixing it with appropriate amount of binder and casted on GC electrode. In two electrode system, the SnS₂ modified electrode was used as working electrode while the Pt wire was employed as counter electrode. The current (I)-voltage (V)measurements have been carried out to evaluate the sensing properties such as sensitivity, detection limit, correlation coefficient, etc of SnS₂ nanoflakes electrode towards nitroaniline chemical. Fig. 7 (b) shows the proposed mechanism of nitroaniline sensing over the SnS₂ nanoflakes electrode. The detection of nitroaniline chemical over the surface of SnS₂ nanoflakes electrode might explain by the push-pull system which depends on the existing functional groups in conjugated π - π backbone [32]. In case of nitroaniline, the amino group acts as electron donor or pushing group and nitro group acts as electron acceptor or pulling group. In electrochemical system or sensor, the active sites on the surface of SnS₂ nanoflakes electrode are easily attracted amino group [33]. On the other hand, nitro group recombines with ē and simultaneously reacts with H₂O to form non harmful nitroso compound which responses in the I-V measurements in the form of increment of current.

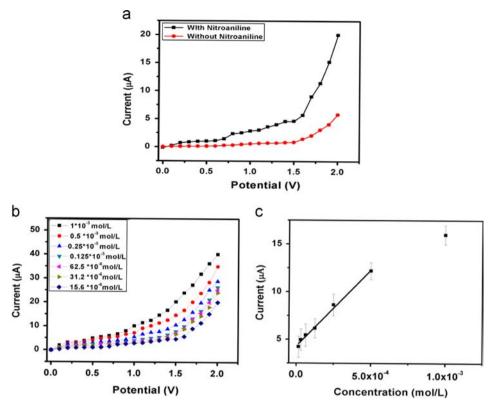


Fig. 8. (a) Typical I-V responses of SnS_2 nanoflakes in (GCE) in 10 ml, 0.1 mol/L PBS solution, (*) with nitro-aniline (15.6 \times 10⁻⁶ mol/L) and (•) without nitro-aniline; (b) I-V response for various concentrations of nitro-aniline (from 15.6 \times 10⁻⁶ mol/L to 1 \times 10⁻³ mol/L) and (c) calibration curve.

Fig. 8(a) depicts the I–V measurements of the fabricated chemical sensor based on SnS2 nanoflakes modified GC electrode without and with nitro-aniline. A sharp increase in the current of ~20.3 μA is observed after the addition of nitro-aniline (15.6 \times 10⁻⁶ mol/L) as compared to chemical sensor without nitro-aniline, suggesting the electrocatalytic activity of SnS2 electrode towards the nitro-aniline chemical. The sensing parameters of fabricated nitro aniline chemical sensor with SnS₂ nanoflakes electrode are evaluated by performing a series of the I-V measurements with different concentration of nitroaniline in PBS. To the best of our knowledge, it is the first report on the sensing behavior of SnS₂ nanoflakes electrode towards the detection of nitro-aniline. To investigate the detailed sensing performance of the SnS₂ nanoflakes modified electrode, systematic I-V measurement experiments have been done by varying the concentration of nitroaniline in 10 ml of PBS (0.1 M). Fig. 8(b) exhibits the I-V responses of SnS₂ nanoflakes modified GCE towards various concentrations of nitro-aniline (from 15.6×10^{-6} mol/L to 1×10^{-3} mol/L). It is clear from the observed graph that the current gradually increases as increasing the nitro-aniline concentrations ranging from $\sim 15.6 \times$ 10^{-6} mol/L to 1×10^{-3} mol/L which reveals that the modified SnS₂ nanoflakes electrode based chemical sensor presents the good sensing response to the nitro-aniline. It is reported that incremental enhancement in current is related to the generation of ions and enlargement in ionic strength of PBS solution. In our case, the incremental addition of nitro-aniline might generate the large number of ions and hence increase the ionic strength of the solution. To evaluate the sensitivity of the fabricated sensor, a calibration curve of current versus nitroaniline concentrations has been plotted and shown in Fig. 8(c). Importantly, the calibrated current linearly increases up to the nitroaniline concentrations of $\sim 0.5 \times 10^{-3}$ mol/L. This phenomenon suggests the good linearity of fabricated chemical sensor based on SnS₂ nanoflakes electrode in the range of $15.6 \times 10^{-6} \text{ mol/L} - 0.5 \times 10^{-3} \text{ mol/}$ L. In other words, the unique nanoflakes morphology of SnS₂ might provide the enough active sites over the surface of modified electrode, which results the high adsorption of nitro-aniline through SnS_2 nanoflakes electrode. The sensitivity of fabricated nitro-aniline sensor was estimated by the slope of the calibrated current curve. A high and a reproducible sensitivity of $\sim 505.82 \pm 0.02$ mA cm $^{-2}$.(mole/L) $^{-1}$ with the experimental detection limit of $\sim 15 \times 10^{-6}$ mol/L in a short response time of ~ 10.0 s is achieved by the fabricated nitro-aniline chemical sensor based on SnS_2 nanoflakes electrode.

To examine the reproducibility and stability of the fabricated chemical sensor based on SnS_2 nanoflakes electrode, the sensing responses of the fabricated sensor was measured for three consecutive weeks. After each experiment, the fabricated sensor was stored in phosphate buffer solution (pH=7.0). Interestingly, no significant decrease was observed in the sensing parameters for three weeks which conclude that the fabricated sensor possess good reproducibility and stability. Finally, due to very specific morphology and various interesting physical and chemical properties, it is proposed that of SnS_2 nanoflakes is very potential, promising and effective electrocatalytic material for the detection of hazardous chemicals like nitro-aniline.

4. Conclusion

In summary, well-crystalline SnS_2 nanoflakes have synthesized by facile hydrothermal process at low-temperature. The detailed studies reveal that the synthesized products are well-crystalline nanoflakes and are grown in large quantity. The synthesized SnS_2 nanoflakes are used as efficient photocatalyst for photocatalytic degradation of Rhodamine B dye and as an electron mediator for the fabrication of reproducible and highly sensitive nitro-aniline chemical sensor. The photocatalytic degradation based on SnS_2 nanoflakes photocatalyst of Rhodamine B dye under visible light irradiation exhibit about 61% degradation. The fabricated chemical sensor exhibits a very high sensitivity of $\sim 505.82 \pm 0.02$ mA.cm $^{-2}$.

 $(\text{mole/L})^{-1}$ and experimental detection limit of $\sim 15 \times 10^{-6}$ mole/L in a short response time of ~ 10.0 s. This research exhibits that the synthesized SnS_2 nanoflakes can effectively be used as visible-light-driven photocatalysts and chemical sensors applications.

Acknowledgements

Authors would like to acknowledge the support of the Ministry of Higher Education, Kingdom of Saudi Arabia for this research through a grant (PCSED-001–11) under the Promising Centre for Sensors and Electronic Devices (PCSED) at Najran University, Kingdom of Saudi Arabia. M.S. Akhtar acknowledge the Research Funds of Chonbuk National University in 2011.

References

- [1] H.S. Nalwa, Encyclopedia of Nanoscience and Nanotechnology, 11–25 ed., American Scientific Publishers, USA, 2011.
- [2] T.Y. Tseng, H.S. Nalwa, Handbook of Nanoceramics and Their Based Nanodevices, 1–5, American Scientific Publishers, USA, 2009.
- [3] B. Jia, W. Jia, X. Wu, F. Qu, Sci. Adv. Mater. 4 (2012) 1127–1133.
- [4] (a) Y. He, Chin. Particuol. 2 (2004) 168;
 - (b) B. Jia, W. Jia, Y. Ma, X. Wu, F. Qu, Sci. Adv. Mater. 4 (2012) 702-707.
- [5] (a) E. Hu, Y.Z. Wang, Chemosphere 39 (1999) 2107;
 - (b) S.S. Arbuj, R.R. Hawaldar, S. Varma, S.B. Waghmode, B.N. Wani, Sci. Adv. Mater. 4 (2012) 568–572.
- [6] (a) G.M. Colonna, T. Caronna, B. Marcandalli, Dyes Pigm. 41 (1999) 211–220;
- (b) D. Tassalit, A.N. Laoufi, F. Bentahar, Sci. Adv. Mater. 3 (2011) 944–948.
- [7] (a) K.P. Mishra, P.R. Gogate, J. Environ. Manage. 92 (2011) 1972–1977;
- (b) Q. Sun, Y. Lu, Y. Liu, J. Nanoeng. Nanomanuf. 2 (2012) 46–48.
- [8] (a) O.J. Hao, H. Kim, P.C. Chiang, Environ. Sci. Technol. 30 (2000) 449-505;
 - (b) L.S. Roselin, R. Selvin, Sci. Adv. Mater. 3 (2011) 113-119;
 - (c) Z. Jin, G.T. Fei, X.Y. Hu, M. Wang, L.D. Zhang, J. Nanoeng. Nanomanuf. 2 (2012) 49–53.
- [9] (a) P.R. Gogate, A.B. Pandit, AIChE J. 50 (2004) 1051-1079;
 - (b) H.G. Oliveira, B.C. Fitzmorris, C. Longo, J.Z. Zhang, Sci. Adv. Mater. 4 (2012) 673–680:
 - (c) S. Barreca, S. Orecchio, A. Pace, Talanta 103 (2013) 349-354.
- [10] (a) H.X. Li, X.Y. Zhang, Y.N. Huo, J. Zhu, Environ. Sci. Technol. 41 (2007) 4410;
 - (b) P. Tang, H. Chen, F. Cao, G. Pan, K. Wang, M. Xu, Y. Tong, Mater. Lett. 65 (2011) 450–452:

- (c) Y.C. Zhang, Z.N. Du, K.W. Li, M. Zhang, Sep. Purif. Technol. 81 (2011) 101–107
- [11] (a) J.C. Colmenares, M.A. Aramendia, A. Marinas, J.M. Marinas, F.J. Urbano, Appl. Catal. A 306 (2006) 120;
 - (b) Thaís M. Milao, Vagner R. de Mendonça, Vinícius D. Araújo, W. Avansi, C. Ribeiro, E. Longo, M.I. Bernardi, Sci. Adv. Mater. 4 (2012) 54–60.
- [12] H. Zhang, R.L. Zong, J.A. Zhao, Y.F. Zhu, Environ. Sci. Technol. 42 (2008) 3803.
- [13] W.M. Du, J. Zhu, S.X. Li, X.F. Qian, Cryst. Growth Des. 8 (2008) 2130.
- [14] N.Z. Bao, L.M. Shen, T. Takata, K. Domen, Chem. Mater. 20 (2008) 110.
- [15] A. Agarwal, P.D. Patel, D. Lakshminarayana, J. Cryst. Growth 142 (1994) 344.
 [16] V.V. Ivanovskaya, A.N. Enyashin, A.L. Ivanovskii, J. Struct. Chem. 45 (2004) 151.
- [17] T. Brousse, S.M. Lee, L. Pasquereau, D. Defives, D.M. Schleich, Solid State Ionics 151 (1998) 51.
- [18] D.B. Mitzi, J. Mater. Chem. 14 (2004) 2355.
- [19] G. Domingo, R.S. Itoga, C.R. Kannewurf, Phys. Rev. 143 (1966) 536.
- [20] C.D. Lokhande, J. Phys. D 23 (1990) 1703.
- [21] (a) T. Jiang, G.A. Ozin, J. Mater. Chem. 8 (1998) 1099;
 - (b) J. Chao, Z. Xie, X.B. Duan, Y. Dong, Z. Wang, J. Xu, B. Liang, B. Shan, J. Ye, D. Chen, G. Shen, Cryst. Eng. Commun. 14 (2012) 3163–3168.
- [22] (a) X.L. Gou, J. Chen, P.W. Shen, Mater. Chem. Phys. 93 (2005) 557;
 - (b) Xi Li, J. Zhu, H. Li, Appl. Catal. B Environ. 123–124 (2012) 174–181.
- [23] (a) C. Yang, W. Wang, Z. Shan, F. Huang, J. Solid State Chem. 182 (2009) 807–812;
 - (b) Y.C. Zhang, Z.N. Du, K.W. Li, M. Zhang, Sep. Purif. Technol. 81 (2011) 101–107.
- [24] (a) D. Vollath, D.V. SzabO, Acta Mater. 48 (2000) 953;
 - (b) Y.C. Zhang, J. Li, M. Zhang, D.D. Dionysiou, Environ. Sci. Technol. 45 (2011) 9324–9331.
- [25] A. Umar, F. Al-Hazmi, G.N. Dar, S.A. Zaidi, R.M. Al-Tuwirqi, F. Alnowaiserb, A. Al-Ghamdi, S.W. Hwang, Sens. Actuat. B Chem. 166–167 (2012) 97–102.
- [26] (a) K. Nakamoto, IR Spectra of Inorganic and Coordination, Compounds-2nd Ed., Wiley Eastern NY, 1970;
 - (b) R.A. Nyquist, R.O. Kagel, Infrared Spectra of Inorganic Compounds, Academic Press, Inc., New York, London220.
- [27] (a) L.X. Zhang, P. Liu, Z.X. Su, Polym. Degrad. Stab. 91 (2006) 2213;
 - (b) L. Xueyan, W. Desong, C. Guoxiang, L. Qingzhi, A. Jing, W. Yanhong, Appl. Catal. B Environ. 81 (2008) 267–273.
- [28] (a) S. Ameen, M.S. Akhtar, Y.S. Kim, H.S. Shin, Appl. Catal. B Envron. 103 (2011) 136–142;
 - (b) X.Y. Li, D.S. Wang, G.X. Cheng, Q.Z. Luo, J. An, Y.H. Wang, Appl. Catal. B 81 (2008) 267.
- [29] (a) T.A. Saleh, V.K. Gupta, J. Coll. Interf. Sci. 371 (2012) 101–106;
 - (b) L. Fuks, D. Filipiuk, M. Majdan, J. Mol. Struct. 792-793 (2006) 104-109.
- [30] Y. Li, J. Hagen, D. Haarer, Synth. Mat. 94 (1998) 273.
- [31] S.A. Khayyat, M.S. Akhtar, A. Umar, Mater. Lett. 81 (2012) 239–241.
- [32] M.M. Miranda, N. Neto, Colloids Surf. A 249 (2004) 79.
- [33] B.C. Roy, M.D. Gupta, J.K. Ray, Macromolecules 28 (1995) 1727.